extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C18).1C23 = C2×D4⋊2D9 | φ: C23/C2 → C22 ⊆ Aut C2×C18 | 144 | | (C2xC18).1C2^3 | 288,357 |
(C2×C18).2C23 = D4⋊6D18 | φ: C23/C2 → C22 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).2C2^3 | 288,358 |
(C2×C18).3C23 = C4○D4×D9 | φ: C23/C2 → C22 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).3C2^3 | 288,362 |
(C2×C18).4C23 = D4⋊8D18 | φ: C23/C2 → C22 ⊆ Aut C2×C18 | 72 | 4+ | (C2xC18).4C2^3 | 288,363 |
(C2×C18).5C23 = D4.10D18 | φ: C23/C2 → C22 ⊆ Aut C2×C18 | 144 | 4- | (C2xC18).5C2^3 | 288,364 |
(C2×C18).6C23 = C4○D4×C18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).6C2^3 | 288,370 |
(C2×C18).7C23 = C9×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).7C2^3 | 288,371 |
(C2×C18).8C23 = C9×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | 4 | (C2xC18).8C2^3 | 288,372 |
(C2×C18).9C23 = C4×Dic18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).9C2^3 | 288,78 |
(C2×C18).10C23 = C36⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).10C2^3 | 288,79 |
(C2×C18).11C23 = C36.6Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).11C2^3 | 288,80 |
(C2×C18).12C23 = C42×D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).12C2^3 | 288,81 |
(C2×C18).13C23 = C42⋊2D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).13C2^3 | 288,82 |
(C2×C18).14C23 = C4×D36 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).14C2^3 | 288,83 |
(C2×C18).15C23 = C42⋊6D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).15C2^3 | 288,84 |
(C2×C18).16C23 = C42⋊7D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).16C2^3 | 288,85 |
(C2×C18).17C23 = C42⋊3D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).17C2^3 | 288,86 |
(C2×C18).18C23 = C23.16D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).18C2^3 | 288,87 |
(C2×C18).19C23 = C22⋊2Dic18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).19C2^3 | 288,88 |
(C2×C18).20C23 = C23.8D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).20C2^3 | 288,89 |
(C2×C18).21C23 = C22⋊C4×D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 72 | | (C2xC18).21C2^3 | 288,90 |
(C2×C18).22C23 = Dic9⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).22C2^3 | 288,91 |
(C2×C18).23C23 = C22⋊3D36 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 72 | | (C2xC18).23C2^3 | 288,92 |
(C2×C18).24C23 = C23.9D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).24C2^3 | 288,93 |
(C2×C18).25C23 = D18⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).25C2^3 | 288,94 |
(C2×C18).26C23 = Dic9.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).26C2^3 | 288,95 |
(C2×C18).27C23 = C22.4D36 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).27C2^3 | 288,96 |
(C2×C18).28C23 = Dic9⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).28C2^3 | 288,97 |
(C2×C18).29C23 = C36⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).29C2^3 | 288,98 |
(C2×C18).30C23 = Dic9.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).30C2^3 | 288,99 |
(C2×C18).31C23 = C36.3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).31C2^3 | 288,100 |
(C2×C18).32C23 = C4⋊C4×D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).32C2^3 | 288,101 |
(C2×C18).33C23 = C4⋊C4⋊7D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).33C2^3 | 288,102 |
(C2×C18).34C23 = D36⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).34C2^3 | 288,103 |
(C2×C18).35C23 = D18.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).35C2^3 | 288,104 |
(C2×C18).36C23 = C4⋊D36 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).36C2^3 | 288,105 |
(C2×C18).37C23 = D18⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).37C2^3 | 288,106 |
(C2×C18).38C23 = D18⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).38C2^3 | 288,107 |
(C2×C18).39C23 = C4⋊C4⋊D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).39C2^3 | 288,108 |
(C2×C18).40C23 = C2×C4×Dic9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).40C2^3 | 288,132 |
(C2×C18).41C23 = C2×Dic9⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).41C2^3 | 288,133 |
(C2×C18).42C23 = C36.49D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).42C2^3 | 288,134 |
(C2×C18).43C23 = C2×C4⋊Dic9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).43C2^3 | 288,135 |
(C2×C18).44C23 = C23.26D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).44C2^3 | 288,136 |
(C2×C18).45C23 = C2×D18⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).45C2^3 | 288,137 |
(C2×C18).46C23 = C4×C9⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).46C2^3 | 288,138 |
(C2×C18).47C23 = C23.28D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).47C2^3 | 288,139 |
(C2×C18).48C23 = C36⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).48C2^3 | 288,140 |
(C2×C18).49C23 = D4×Dic9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).49C2^3 | 288,144 |
(C2×C18).50C23 = C23.23D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).50C2^3 | 288,145 |
(C2×C18).51C23 = C36.17D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).51C2^3 | 288,146 |
(C2×C18).52C23 = C23⋊2D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 72 | | (C2xC18).52C2^3 | 288,147 |
(C2×C18).53C23 = C36⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).53C2^3 | 288,148 |
(C2×C18).54C23 = Dic9⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).54C2^3 | 288,149 |
(C2×C18).55C23 = C36⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).55C2^3 | 288,150 |
(C2×C18).56C23 = Dic9⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).56C2^3 | 288,154 |
(C2×C18).57C23 = Q8×Dic9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).57C2^3 | 288,155 |
(C2×C18).58C23 = D18⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).58C2^3 | 288,156 |
(C2×C18).59C23 = C36.23D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).59C2^3 | 288,157 |
(C2×C18).60C23 = C2×C18.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).60C2^3 | 288,162 |
(C2×C18).61C23 = C24⋊4D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 72 | | (C2xC18).61C2^3 | 288,163 |
(C2×C18).62C23 = C22×Dic18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).62C2^3 | 288,352 |
(C2×C18).63C23 = C22×C4×D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).63C2^3 | 288,353 |
(C2×C18).64C23 = C22×D36 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).64C2^3 | 288,354 |
(C2×C18).65C23 = C2×D36⋊5C2 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).65C2^3 | 288,355 |
(C2×C18).66C23 = C2×Q8×D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).66C2^3 | 288,359 |
(C2×C18).67C23 = C2×Q8⋊3D9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).67C2^3 | 288,360 |
(C2×C18).68C23 = Q8.15D18 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 144 | 4 | (C2xC18).68C2^3 | 288,361 |
(C2×C18).69C23 = C23×Dic9 | φ: C23/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).69C2^3 | 288,365 |
(C2×C18).70C23 = C22⋊C4×C18 | central extension (φ=1) | 144 | | (C2xC18).70C2^3 | 288,165 |
(C2×C18).71C23 = C4⋊C4×C18 | central extension (φ=1) | 288 | | (C2xC18).71C2^3 | 288,166 |
(C2×C18).72C23 = C9×C42⋊C2 | central extension (φ=1) | 144 | | (C2xC18).72C2^3 | 288,167 |
(C2×C18).73C23 = D4×C36 | central extension (φ=1) | 144 | | (C2xC18).73C2^3 | 288,168 |
(C2×C18).74C23 = Q8×C36 | central extension (φ=1) | 288 | | (C2xC18).74C2^3 | 288,169 |
(C2×C18).75C23 = C9×C22≀C2 | central extension (φ=1) | 72 | | (C2xC18).75C2^3 | 288,170 |
(C2×C18).76C23 = C9×C4⋊D4 | central extension (φ=1) | 144 | | (C2xC18).76C2^3 | 288,171 |
(C2×C18).77C23 = C9×C22⋊Q8 | central extension (φ=1) | 144 | | (C2xC18).77C2^3 | 288,172 |
(C2×C18).78C23 = C9×C22.D4 | central extension (φ=1) | 144 | | (C2xC18).78C2^3 | 288,173 |
(C2×C18).79C23 = C9×C4.4D4 | central extension (φ=1) | 144 | | (C2xC18).79C2^3 | 288,174 |
(C2×C18).80C23 = C9×C42.C2 | central extension (φ=1) | 288 | | (C2xC18).80C2^3 | 288,175 |
(C2×C18).81C23 = C9×C42⋊2C2 | central extension (φ=1) | 144 | | (C2xC18).81C2^3 | 288,176 |
(C2×C18).82C23 = C9×C4⋊1D4 | central extension (φ=1) | 144 | | (C2xC18).82C2^3 | 288,177 |
(C2×C18).83C23 = C9×C4⋊Q8 | central extension (φ=1) | 288 | | (C2xC18).83C2^3 | 288,178 |
(C2×C18).84C23 = Q8×C2×C18 | central extension (φ=1) | 288 | | (C2xC18).84C2^3 | 288,369 |